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Abstract

Background: In some clinical situations, for which RCT are rare or impossible, the majority of the evidence comes
from observational studies, but standard estimations could be biased because they ignore covariates that confound
treatment decisions and outcomes.

Methods: Three observational studies were conducted to assess the benefit of Allo-SCT in hematological
malignancies of multiple myeloma, follicular lymphoma and Hodgkin’s disease. Two statistical analyses were
performed: the propensity score (PS) matching approach and the inverse probability weighting (IPW) approach.

Results: Based on PS-matched samples, a survival benefit in MM patients treated by Allo-SCT, as compared to
similar non-allo treated patients, was observed with an HR of death at 0.35 (95%CI: 0.14-0.88). Similar results were
observed in HD, 0.23 (0.07-0.80) but not in FL, 1.28 (0.43-3.77). Estimated benefits of Allo-SCT for the original
population using IPW were erased in HR for death at 0.72 (0.37-1.39) for MM patients, 0.60 (0.19-1.89) for HD
patients, and 2.02 (0.88-4.66) for FL patients.

Conclusion: Differences in estimated benefits rely on whether the underlying population to which they apply is an
ideal randomized experimental population (PS) or the original population (IPW). These useful methods should be
employed when assessing the effects of innovative treatment in non-randomized experiments.
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Background
Randomized controlled trial (RCT) is considered the
gold standard study design for removing sources of bias
from observations when estimating the effects of a treat-
ment [1,2]. However, in some situations, it may be diffi-
cult, unnecessary, inappropriate, or impossible to perform
an RCT [3], and the majority of the evidence comes from
observational studies [4,5].
This is notably true when evaluating non-myeloablative

or reduced-intensity conditioning (RIC) regimens before
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allogeneic stem cell transplantation (Allo-SCT). RIC
Allo-SCT has emerged in the last decade as an at-
tractive modality to decrease transplant-related tox-
icity. The enthusiasm for this technique has been
based on heterogeneous observational studies ranging
from case reports to registry cohort studies [6-14].
These studies are very heterogeneous in terms of pa-
tient selection criteria and outcomes, RIC regimens
and timing. For this reason, conclusions regarding the
the overall body of evidence in this area are very limited
[15]. Only a few prospective controlled clinical trials have
been performed in studies of myeloma. This is mostly due
to practical difficulties and selection restrictions for
patients affected by advanced or refractory diseases, el-
derly patients, or patients with comorbidities for whom
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no other treatment option could be clearly proposed.
In these few recent prospective non-randomized studies
that have been conducted [16-18], the availability of an
HLA-identical or non-identical sibling donor has been
considered equivalent to so-called ”genetic randomiza-
tion” of bone marrow transplant (BMT) against che-
motherapy, justifying the absence of RCT [19-21].
Nevertheless, results of such studies are still vulnerable
to selection bias and confounding factors.
In RCTs, the use of inclusion and exclusion criteria

yields a sample of subjects that are all eligible for each of
the treatments under study. By contrast, in observational
studies, baseline selection criteria differing between Allo-
SCT and other treatments may also affect patient out-
come and lead to bias in the estimated effect of [2,22].
Thus, non-randomized comparative designs expose to
unequal distributions of covariates that impact both the
outcome and the decision to treat, so-called ”confound-
ing by indication” [23]. Adjusted techniques of treatment
estimation through the use of multivariate regression
models have been widely used to control for confounding
in observational data, but these methods do not provide
any causal evidence comparable to that derived from
RCTs. Formally, an association is considered causal when
the observed outcome under the studied exposition is
different from what would have been observed in the ab-
sence of the exposition. Because the latter outcome can-
not actually happen, it is generally known as a
counterfactual outcome [24]. In an ideal randomized de-
sign with blind assignment, full compliance, and no loss
during follow-up, the absence of confounding data
ensures that treated and non-treated patients exchange-
able. In this setting, RCT allows causal claims about the
population in the study to be deduced from differences
between the treatment groups [25]. By contrast, in obser-
vational studies, because treated and non-treated popula-
tions are not exchangeable, no causal evidence could be
derived from the original data [26]. Therefore, specific
statistical tools have been developed to enable appopriate
causal conclusions to be derived from observational data.
These tools re-create the conditions of conditional ex-
changeability as observed in an RCT.
This article provides an illustration of two of these

specific statistical approaches in the particular setting of
Allo-SCT evaluation of observational cohorts. The
methods described here aim at handling confounding
variables induced by non-randomized designs, namely,
the propensity score-based (PS) matching approach [27]
and the inverse probability of treatment weighting (IPW)
approach, which is derived from the marginal structural
models [28]. These statistical methods have both been
developed to re-create exchangeability in the presence of
all confounding variables. By re-creating populations in
which all the confounding variables have comparable
distributions (Figure 1), they allow a causal inference
and unbiased estimation of treatment effect [26,29].

Methods
The Allogeneic Stem Cell Transplantation cohorts
Allogeneic Stem Cell Transplantation (Allo-SCT) was
performed in patients who relapsed after autologous
transplantation (in Saint-Louis Hospital, Paris, France)
but remained chemosensitive. Among them, all consecu-
tive patients with multiple myeloma (MM, 23 pts), fol-
licular lymphoma (FL, 28 pts) or Hodgkin’s disease (HD,
31 pts), were considered for analysis as follows.

� MM: Between October 2002 and August 2006, 23
consecutive MM patients under 60 years of age and
in their first or second relapse received RIC
Allo-SCT.

� FL: All 28 consecutive patients who received
Allo-SCT for relapsing/refractory FL from December
1989 to January 2007 were eligible for analysis.

� HD: A total of 31 HD patients who received
Allo-SCT from January 1995 to December 2008
were consecutively analyzed.

Selection of controls
The main issue in observational studies is the definition
of control subjects to whom comparison of outcomes
can be applied. As reported by Austin [30], observational
studies should be designed to approximate randomized
experiments as closely as possible. This suggests that
particular attention should be paid to include only those
subjects who are eligible to receive either treatment or
intervention [31]. This refers to the “positivity” or "over-
lap" [32] assumption and requires a careful selection of
the original cohorts of untreated patients.
As summarized in the flow chart depicted in Figure 2,

controls were selected carefully. MM controls were
selected from patients enrolled in the MAG-95 and
MAG-2002 trials [33], while FL and HD patients were
selected from hospital cohorts. The clinical trials from
which the Multiple Myeloma control patients were
selected, have been carried out in compliance with the
Helsinki Declaration and French laws regarding biomed-
ical research at the time the trials were conducted. In
particular the studies were approved by the Ethics Com-
mittee of Saint Louis Hospital (Paris, France). To insure
the validity of the overlap assumption, we restricted the
controls to patients who survived at least six months
after relapse (MM) or one year after auto-SCT (HD),
since this was the minimal time between relapse or first
Auto-SCT and Allo-SCT in MM and HD patients from
the Allo-SCT groups, respectively.
Three cohorts comprised of 276 patients (142 MM, 115 FL

and 19 HD) who relapsed after autologous transplantation
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Figure 1 Illustration of the different distributions of a covariate (X) in two non-randomized samples (A & B). The propensity score
method (PS) aims at re-creating the conditions of a pseudorandomization, while the inverse probability weighting (IPW) approach aims at
re-creating a pseudopopulation where patients A and B are exchangeable. Both methods aim at obtaining a similar distribution of the covariate X
in the two groups.
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(auto-SCT) but did not undergo allogeneic stem cell trans-
plantation were retained for analysis. Patients who had
contraindications (severe comorbidities, age > 65 years....)
to Allo-SCT were excluded from the cohort.
To estimate the benefit of Allo-SCT from observa-

tional cohort data, three analyses were performed in
each cohort of MM, FL and HD patients separately.
Both approaches require modeling the probability of
being treated.
Probability of treatment model: Propensity Score
The propensity score (PS) is derived from the probability
that a given patient would receive Allo-SCT condition-
ally to his confounding covariates, X. It is estimated by
fitting a multivariate logistic model to the original
cohorts of treated and untreated patients in order to
predict allocation to Allo-SCT from patient covariates, X
[27,34,35]. This aims to re-create exchangeability, that is,
there is no unmeasured confounding variable. Unfortu-
nately, this assumption cannot be tested, and the PS
model requires the analyst to have confidence that X
contains almost all characteristics related to both treat-
ment and outcome, and that there are no additional, un-
measured, confounders [36].
Since one cannot know all the covariates that are con-
founding, this multivariable model should include most
of the covariates measured at baseline, or at least those
known or suspected to be confounding, in the hope that
there is at least one measured covariate strongly related
to all the confounders [37,38]. Nevertheless, due to the
sample size of the cohorts, we only included those vari-
ables that were strongly related to the treatment alloca-
tion in the PS models [38]. These included age at
diagnosis, time to relapse and beta-2-microglobulin level
for the MM cohorts, age at relapse, time from relapse to
SCT and number of previous regimens for the FL cohorts,
and age at diagnosis and stage for the HD cohort.

Estimation of causal benefit of Allo-SCT
The main endpoints were overall survival (OS) and event-
free survival (EFS). These were defined in the Allo-SCT
groups from the date of Allo-SCT for MM and FL and
from the date of first autologous SCT for HD. In the non-
Allo-SCT patients, OS and EFS were defined from the
date of relapse plus six months for MM, from the date to
autologous SCT for FL and from the date of first autolo-
gous SCT plus 12 months for HD. We first fitted standard
Cox models to the original samples. Then, specific meth-
ods to handle confounding variables were applied.
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Figure 2 Flow chart for the selection of the control patients.
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Matched propensity score-based approach
Propensity score (PS) analysis attempts to create a
comparison group of non-treated patients that closely
mimics the group of treated patients by matching
based on the likelihood that a given patient has received
Allo-SCT considering all his confounders (Figure 1) [34].
It is based on a matched-paired analysis as follows

[39,40]: Allo-SCT patients and controls are matched on
the logit of the PS using calipers of width equal to 0.2 of
its standard deviation (SD). Two patients of a pair cannot
differ in the linear score of being treated by more than
0.2 SD [39,40]. A nearest-neighbor matching algorithm
was thus used to form pairs of treated and untreated sub-
jects with the constraint that once a patient had been
matched, he(she) could not be further matched.
The degree to which the matching procedure adequately
balanced covariates between patients who received Allo-
SCT and those who did not was evaluated by comparing
the standardized mean differences of the main measured
baseline covariates between treated and untreated patients
in the original and matched samples [35,41].
The benefit of Allo-SCT to outcome was then esti-

mated by fitting a Cox model that applies to the
propensity-based matched sample using a robust vari-
ance estimator to take into account the correlation
induced by the matching [42,43].

Inverse probability weighting approach
As an alternative to the PS matching approach, inverse
probability of treatment weighted (IPW) estimators have



Table 1 Main characteristics of patients according to
treatment group before and after matching or weighting

Median [Q1-Q3] Allo-SCT Controls p-value

N (%)

MM

Original set n=23 n=142

Age 48 [40.5-51] 51.5 [47-55] 0.005

Beta2 ≥ 3.5 4 (17 %) 52 (37 %) 0.12

Months to relapse 16 [11–32.5] 26.5 [17-38] 0.014

Matched set n=21 n=21

Age 49 [41-51] 46 [42-50] 0.24

Beta2 ≥ 3.5 4 (19 %) 4 (19 %) 0.71

Months to relapse 17 [13-33] 24 [17-32] 0.22

Weighted set n=268 n=165

Age 56 [51-58] 51 [46-54] 0.15

Beta2 ≥ 3.5 4 (19%) 4 (19%) 0.28

Months to relapse 58 [26–70] 25 [17-36] 0.08

FL

Original set n=28 n=115

Age 38 [33-42] 46 [40-52] 0.0001

No previous regimens 4 [3,4] 3 [2-4] 0.005

Months to relapse 6.7 [5.6-9.2] 4.6 [3.7-6.1] 0.0001

Matched set n=19 n=19

Age 38 [33-42] 38 [33-45] 0.35

No previous regimens 3 [3,4] 3 [3,4] 0.90

Months to relapse 6.3 [4.7-8.9] 7.8 [4.0-10.7] 0.82

Weighted set n=78 n=117

Age 39 [35-46] 44 [34-50] 0.42

No previous regimens 3 [3,4] 3 [2-4] 0.16

Months to relapse 5.9 [4.7-7.4] 5.3 [3.8-9.3] 0.03

Hodgkin disease

Original set n=23 n=19

Age 23 [19-29] 29 [24-35] 0.05

No previous regimens 4 [3,4] 4 [4,5] 0.05

Months to relapse 1.2 [0–9.2] 2.4 [0–7.2] 0.94

Matched set n=15 n=15

Age 24 [21-31] 25 [23-30] 0.98

No previous regimens 3 [3,4] 4 [4,5] 0.21

Months to relapse 1.9 [0.3-9.9] 1.8 [0–5.4] 0.49

Weighted set n=41 n=40

Age 26 [20-49] 25 [20-32] 0.71

No previous regimens 3 [3,4] 4 [4] 0.17

Months to relapse 0.1 [0–0.7] 0.1 [0–0.5] 0.35
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been developed to draw causal conclusions from obser-
vational data in the presence of confounding variables
by indication [24,44,45]. This approach consists of creat-
ing a hypothetical population, the so-called pseudo popu-
lation, that includes patients for which there are no
example of Allo-SCT treated or untreated patients shar-
ing the same characteristics (Figure 1) [28,46,47]. In that
pseudo population, in which the probability of treatment
no longer depends on covariates, the effect of the treat-
ment on outcome is the same as in the original selected
population. This pseudo-population is expected to have
the X distribution of the total population.
This method uses propensity scores to derive weights

for individual observations. Actually, each individual is
assigned a weight, which is inversely proportional to his
(her) probability of receiving the treatment he (she) ac-
tually received (either Allo-SCT or not), conditionally to
the value of his (her) counfonding covariate X [28]. It is
thus computed directly from 1/PS or 1/(1-PS), respect-
ively. This is also referred as the "PS weighted modelling
method" or the "inverse propensity weighted method"
[28,29,36,46,48].
A marginal causal effect of Allo-SCT on survival or

EFS in the resulting pseudo-cohorts is then analyzed by
using a weighted Cox proportional hazard model. As in
the matched propensity score-based approach, a robust
variance estimator is applied to take into account that
each patient contributed more than once, given that
weights are not equal to one [28].

Statistical analysis
Logistic models, Cox models and weighted Cox models
were fitted using standard packages of R software [49].
Matching was performed using the Matching R package.
Equivalent packages are available in standard statistical
softwares.
We checked for model misspecifications, i.e., of either

the PS or IPW models. For the PS model, we checked for
linearity between continuous covariates and the log-odds
of receiving treatment [41]. For the IPW model, we
explored the distribution of weights (mean, standard
deviations, minimum and maximum) [39]. Weights distri-
bution was considered as optimized when mean weights
were close to 1 with limited dispersion [28,46]. Reductions
in the imbalances reached by each method were assessed
using graphical displays of the standardized mean differ-
ence in main covariates between treatment groups [41,50].
Finally, Cox model assumptions of proportional

hazards and log-linearity for continuous covariates were
checked [51].

Results and discussion
Three separate analyses were thus performed corre-
sponding to MM, FL and HD patients, respectively.
Baseline comparison
As expected due to the-non randomized designs, and al-
though controls were selected carefully to avoid non-
overlapped confounding variables, Allo-SCT and control
patients markedly differed at baseline (Table 1). As
expected, all patients who received Allo-SCT were



Table 2 Estimated hazard ratio (HR) of death or event and 95% confidence interval using naive, matched propensity
score-based or IPW approaches

Numbers of patients OS : HR (CI95%) EFS : HR (CI95%)

Allo-SCT/Controls

Original
samples

PS-matched
samples

Naive PS IPW Naive PS IPW

MM 23/142 21/21 0.38 (0.18;0.80) 0.35 (0.14;0.88) 0.72 (0.37;1.39)

FL 28/115 19/19 2.55 (1.37;4.75) 1.28 (0.43;3.77) 2.02 (0.88;4.66) 1.21 (0.68;2.18) 0.45 (0.17;1.21) 0.67 (0.31;1.41)

HD 22/19 15/15 0.33 (0.12;0.87) 0.23 (0.07;0.80) 0.60 (0.19;1.89) 0.71 (0.38;1.35) 0.47 (0.20;1.09) 0.64 (0.33;1.22)
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younger than those who did not. Moreover, MM patients
who received Allo-SCT had relapsed earlier (median 16
vs. 26.5) than those who did not; by contrast, HD
patients from the Allo-SCT group had delayed relapse as
MM

0 1 2

Age diag.

Time to Relapse

Beta2

HD

0 1 2

Sex

Age diag.

Stade

Time Relapse to Trans.

Nb of prev. regimens

Nb of prev. auto SCT

Chemosensitive

Figure 3 Imbalances in the MM, FL and HD cohorts, defined as the st
two treatment groups. � Naive Analysis, red circle symbol = Propensity S
compared to the control group (median: 1.2 vs. 2.4).
Otherwise, FL patients from the Allo-SCT group
received a higher number of previous regimens (4 vs. 3)
while those HD patients had less (3 vs. 4). This is
FL

0 1 2

Sex

Age diag.

Age relapse

Age Trans.

Time Relapse to Trans.

Nb of prev. regimens

Chemosensitive

Prior Rituximab

andardized means differences of covariate values between the
core Model, blue circle symbol = Marginal Structural Model.
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illustrated on plots of absolute mean standardized differ-
ences in Figure 3.

Treatment effect
From the naive analyses based on standard Cox models,
a significant benefit associated with RIC Allo-SCT was
observed for MM patients with an estimated hazard
ratio (HR) of death at 0.38 (95% confidence interval 95%
CI: 0.18;0.80) and for HD patients (HR= 0.33, 95%CI:
0.12;0.87) while Allo-SCT seemed to be deleterious in FL
patients (HR= 2.55, 95%CI: 1.37;4.75). No significant
benefit was found in terms of EFS (HR =1.21, 95%CI:
0.68;2.18, HR =0.71, 95%CI: 0.38;1.35 for FL and HD
respectively).

Matched propensity score-based approach
The matching procedure resulted in a drastic reduction
of the sample size of the PS-matched samples. From the
original datasets, 21 (91% of RIC Allo-SCT patients,
15% of controls) matched pairs could be constituted
from MM patients, as compared to 19 (68% of Allo-SCT
patients, 17% of controls) from the the FL patients,
and 15 (48% of the Allo-SCT patients and 79% of the
controls) from the HD patients. This relies both on the
original differences in sample sizes and the non-overlapped
covariates values (Table 1). As a result, baseline imba-
lances between the two matched sets were reduced
(Figure 3). Note that imbalance was also reduced for
those covariates not included in the PS, especially
age at diagnosis and age at transplantation in the FL
cohort.
Based on these PS-matched samples, we observed a

significant benefit to the survival of Allo-SCT as com-
pared to non Allo-SCT MM patients with an estimated
HR of death at 0.35 (95%CI: 0.14-0.88), as well as HD
(HR= 0.23, 95%CI: 0.07;0.80). A similar result was not
found for FL patients (HR= 1.28; 95%CI: 0.43;3.77). No
significant benefit was found for EFS with the estimated
HR of event at 0.45 (95%CI: 0.17;1.21) in FL and 0.47
(95%CI: 0.20;1.09) in HD.

IPW approach
Using the IPW approach, imbalances in the pseudo-
cohorts were also reduced, though reduction was slightly
less effective than that observed using the PS (Figure 3).
Actually, the distribution of the covariates in the
weighted samples (pseudo-population, was close to that
observed in the original datasets (Table 1).
Despite similar trends, the survival benefit associated

with Allo-SCT in MM and HD patients was erased
using IPW based analyses as compared to PS-based ana-
lyses, which yielded an estimated HR of death of 0.72
(95%CI: 0.37-1.39) and 0.60 (95%CI: 0.19-1.89), respect-
ively. Results for FL patients remained non-significant
(HR= 2.02, 95%CI: 0.88;4.66). No significant benefit was
found for EFS, which gave an estimated HR of event of
0.67 (95%CI: 0.31;1.41) in FL and 0.64 (95%CI: 0.33;1.22)
in HD.
The main objective of this paper was to report exam-

ples of treatment estimation from observational cohorts
in the particular setting of Allogeneic Stem Cell Trans-
plantation. Despite the fact that the randomized con-
trolled trial (RCT) is the gold standard for removal of
most sources of bias from observational data, such stud-
ies are difficult to conduct when evaluating Allo-SCT. In
situations such as HLA-matched sibling allogeneic trans-
plants, some authors have advocated a biological assign-
ment trial [16]. Such trials are also known as genetic or
Mendelian randomization trials, and these trials con-
sider the selection of the sibling donor and recipient
genes from their parents as a random process at the
time of conception. Nevertheless, implementing such a
trial requires careful consideration of the ethical issues
and potential biases (prognostic factor imbalance, enroll-
ment bias) [21]. Moreover, these trials are prospective
and require several years to provide estimates of survival
benefits, while observational information about treat-
ment effect are already available.
Indeed, observational studies have several advantages

over randomized, controlled trials, including lower cost,
greater timeliness, and a broader range of patients [8].
Moreover, systematic reviews tend to demonstrate that,
when adequaltely performed, observational studies give
results similar to those of randomized clinical trials [52].
In the hematology field, and especially in that of Allo-
SCT, many international cooperating groups exist and
register all blood or marrow transplantation experi-
ments. Notably, the European Group for Blood and
Marrow Transplantation (EBMT) and the Center for
International Blood and Marrow Transplant Research
(CIBMTR) have collected information about patients
undergoing Allo-SCT since the 1970s. Such observa-
tional registers could be a an important source of infor-
mation when estimating the causal effect of Allo-SCT as
compared to autologous SCT or other standard treat-
ments. Nevertheless, standard statistical analyses from
such observational data may result in biased and associ-
ational rather than causal estimates of treatment effect
[27,28].
Since 2000, there has been a growing interest in the

use of statistical methods to estimate unbiased treat-
ment effects from observational studies and begin to
be used in haematology or oncology [53-56]. Most
of these methods are based on the propensity score, i.e.
re-creation of the exchangeability between the two
treatments groups. Two main approaches have been pro-
posed in this setting, namely, the propensity score-
matched approach and the inverse probability weighting
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approach [36]. If these approaches were initially pro-
posed for large studies, recent work by Pirracchio et al.
showed that propensity score approaches (matching or
IPW) are also valid and useful on small sample studies
[5]. We illustrated how those methods could perform to
estimate the effect of Allo-SCT on survival and event-free
survival using observational data from multiple myeloma,
follicular lymphoma and Hodgkin’s disease observational
cohorts. Obviously, considering our low sample sizes, our
findinds should be confirmed by larger studies.
However, as recently pointed out [32], both approaches

are interested in estimating different quantities, namely
the average treatment effect (ATE) and the ATE for
the treated (ATT). The propensity based approach
aims at estimating the ATT, i.e. the effect of treat-
ment on those subjects who are treated, allowing
observational studies to be designed similarly to ran-
domized experiments [57]. By contrast, the inverse
probability weighting approach aims at estimating the
ATE, that is, the average effect on the population of
moving all subjects from being untreated to treated.
According to specific clinical contexts, researchers
should determine the most clinically meaningful treat-
ment effect. When evaluating the benefit of Allo-SCT
as compared to chemotherapy, ATE (and thus, the
IPW approach) would answer the question about how
outcomes would change if a policy was instituted that
all patients eligible for either therapy were offered
Allo-SCT. By contrast, ATT would answer the ques-
tion of what was the effect of treatment for those
who selected a particular modality such as Allo-SCT.
This explains why estimated resulting hazard ratio
estimates differed between the two approaches. In-
deed, by contrast to the PS-based approach, the IPW
approach never showed a significant impact of Allo-SCT
on overall survival or event-free survival. In other
words, the benefit of Allo-SCT appeared to be restricted
to treated patients, while no average benefit appeared
to be expected in the whole eligible population for
Allo-SCT. This is likely to rely on the fact that the
benefit of Allo-SCT may be restricted to some subsets
of patients that have been excluded by matching in
the PS-matched analyses but maintened, and possibly
heavily weighted, in the IPW method. This further
highlights the importance of the positivity (overlap)
assumption.
Indeed, whatever the approach, each subject is

assumed to have a non-zero probability of receiving ei-
ther treatment. This suggests that observational studies
should be designed similar to RCTs. That is, subjects
who are ineligible for at least one of the treatments
should be excluded [32]. Actually, this was exemplified
in our cohorts by the percentage of control patients who
could not be matched, ranging from 21% in HD up to
85% in MM. Such percentages could be related to the
differences in the criteria used to define controls. More-
over, it is assumed that all variables related to both out-
comes and treatment assignments were introduced in
the propensity score model [35]. Rubin suggested includ-
ing only variables that are strongly related to the treat-
ment allocation, while others have proposed the
application of selection algorithms [37,58]. Our PS mod-
els were based on unbalanced characteristics with known
clinical significance and the number of variables was
limited by the sample size. Therefore, one cannot ex-
clude that other confusing characteristics should have
been included in the PS model.
Other methods could be proposed to estimate treat-

ment effect in non-randomized studies. The most
popular method consists in estimating treatment
effects using adjustment on covariates with a multivari-
able regression model [5].The main limitation of this
approach is that the treatment effect estimated is nei-
ther the ATE nor the ATT. Indeed, the treatment ef-
fect measured is conditional on the other covariates
and then biased if used as an estimate of the ATE or
ATT. Another emerging approach is the instrumental
variable (IV) approach which is an econometric
method used to remove the effects of hidden bias in
observational studies [5]. An instrumental variable has
2 key characteristics: it is highly correlated with treat-
ment and does not independently affect the outcome,
so that it is not associated with measured or unmeas-
ured patient health status. In our case, none available
variable could be considered as an IV. Moreover, this
approach hasn’t been validated on small samples. This
should deserve further evaluation to be used in such
clinical settings.

Conclusion
In summary, it is expected that hematologists involved
in clinical research will face an increasing need for
methods such as those discussed here when assessing
effects of innovative treatments based on cohorts or
registries. Actually, though they do not replace rando-
mized trials, these approaches have already been widely
used in other medical settings such as cardiology or crit-
ical care [7,59]. This could be similar to what happened
a decade ago with competing risks approaches in esti-
mating the incidence of relapse. Whatever the statistical
innovation, full understanding of the method is required.
Notably, differences in the proposed methods should be
anticipated by considering the population of interest for
which the benefit is likely to apply. In other words, phy-
sicians and researchers should carefully assess whether
they are interested in estimating the average treatment
effect in the eligible population or only in those who
were treated.
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