CORRECTION

Open Access

Correction to: Rapid and reliable detection of α-globin copy number variations by quantitative real-time PCR

Runa M. Grimholt^{1*}, Petter Urdal¹, Olav Klingenberg² and Armin P. Piehler³

Correction to: BMC Hematol (2014) 14:4 https://doi.org/10.1186/2052-1839-14-4

The copy number of the HBA1 assay for the $-(\alpha)^{20.5}$ deletion in the HBA-CNV method described in the original article [1] was incorrectly reported. The authors wish to note that the HBA1 assay will not be affected by the $-(\alpha)^{20.5}$ deletion and will show two copies (Table 1 corrected). The 3' breakpoint of the $-(\alpha)^{20.5}$ deletion is located within exon 2 of the HBA1 gene [2], leaving intact the area where the HBA1 assay is amplifying. The partial deletion of HBA1 causes a complete abolition of the gene expression, hence $-(\alpha)^{20.5}$ is considered as a double gene deletion. This shows that even though the HBA1 assay may show two copies, a deletion affecting both alpha-globin genes can not be excluded. Similarly, the Hb Var database contains examples of deletions that will not influence HBA2 assay copy number despite affecting both alpha-globin genes. Hence, molecular data should always be evaluated together with hematological data.

Author details

¹Department of Medical Biochemistry, Oslo University Hospital, Ullevaal, 0424 Oslo, Norway. ²Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway. ³Fürst Medical Laboratory, 1051 Oslo, Norway.

Published online: 31 October 2019

References

- Runa M, Grimholt RM, Urdal P, Piehler AP. Rapid and reliable detection of αglobin copy number variations by quantitative real-time PCR. BMC Hematol. 2014;14:4.
- Nicholls RD, Higgs DR, Clegg JB, Weatherall DJ. Alpha zero-thalassemia due to recombination between the alpha 1-globin gene and an Alul repeat. Blood. 1985;65(6):1434–8.

* Correspondence: runamg@medisin.uio.no

¹Department of Medical Biochemistry, Oslo University Hospital, Ullevaal, 0424 Oslo, Norway

Full list of author information is available at the end of the article

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Genotype	Samples (n)	Copy Number Predicted			
		HBA1	HBA3.7	HBA2	HS-40
aa/aa	63	2	2	2	2
-α ^{3.7} /αα	22	2	1	2	2
-α ^{4.2} /αα	2	2	2	1	2
-α ^{3.7} /-α ^{3.7}	8	2	0	2	2
^{SEA} /aa	7	1	1	1	2
^{FIL} /aa	1	1	1	1	2
-(a) ^{20.5} /aa	1	2	1	1	2
^{MED} /aa	1	1	1	1	2
-α ^{3.7} / ^{SEA}	1	1	0	1	2
$\alpha\alpha/\alpha\alpha\alpha^{anti3.7}$	2	2	3	2	2
Total	108				

Table 1 Predicted copy number in 108 patient samples